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Nondiffractive fields
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At the present time no general definition of nondiffractive beam has been generally accepted. We propose
one simple definition based on the Poynting vector and light interj$t063-651X96)13709-(

PACS numbd(s): 42.25.Fx

Diffraction of light was first reported by Leonardo da _3 i & :
Vinci, but the first steps to its understanding were only made E=£exp—ioh+&expliot). @
in the 17th(Grimaldi, Huygens, Hook, Newtorand 18th  The same time behavior is assumed for the other electric and
centuries(Fresnel, Youny Historically, diffraction is what  magnetic vector®, H, andB.
we call the phenomenon when light is not traveling in  tpe light intensity then reads
straight lines although it should be according to the laws of
ray optics. The discovery of diffraction served as an impor- . 2 R R
tant argument for overcoming corpuscular Newtonian optics.  |1=(S)=(EXH)=2 Rg&* X H}=——1Im{&* Xrot&},
The present-day idea about diffraction is not connected with po
obstacles and apertures ofiy}. Any nonhomogeneous light
ber the Gaussian beam in free vacyum

In a narrower “technical” sense, diffraction means the divi=0. 3
defocusing of a beam—i.e. the transversal change of the en-
ergy distribution in the beam. For the light energy and infor- The vectorl can be decomposed &s I++1_, wherel
mation transfer it is very important to suppress that defocusis the transversal component lofi.e., the component laying
ing or energy melting maximally. That problem was a strongin the x,y plane while the longitudinal part, is thez com-
motivation for the study of nondiffractive fields. ponent; we will suppose the light propagation to be in the

Diffraction is the natural attribute of any wave phenom-z axis only in the following.
enon. Our goal will be to give an appropriate definition or  |n waveguide theory we can use the modal function an-
condition for the stationary light fields propagating with no satz
transversal spreading of energy in any dielectric m¢aigan-
homogeneous and nonlinear as well E(x,y,2)=e(x,y)expi Bz) (4)

Some nondiffractive solutions are already knd\@h In a
vacuum they are planar waves and Bessel bd@n§]; in to find the explicit form of modes propagating along the
waveguides these fields are known as well, and are calle@¥xis, and thus can also serve as a useful definition of nondif-
modes, in nonlinear media they are spatial solittdijsetc.  fractive beams in the waveguide.

Up to now no general definition of a nondiffractive beam  With respect to the chosen propagation axis, we assume
has been accepted. We want to discuss some possible dpe transversal nonhomogeneity of a waveguide described by
proaches to this question, and propose one simple definitiofie dielectric permittivitye(x,y). So the electric induction
based on the Poynting vector. D= €€ will have the same fornt4), and the magnetic inten-

The simplest intuitive definition of nondiffractive beams sity as well. This can be proved by simple vector

can be introduced as a field with no transversal energy ﬂuxalgebra ﬁ(x y z):rotfj’/i wp=rof e(x,y)exp(82)Jiop=
i.e., I+=0 (the trivial definition. We will show that more h(x,y)expiBz2) and the light intensity vector

general nondiffractive fields are possible, and that we ”eeij=2Re{e*><h}=I(x y) does not depend on The energy

f!nd amore general definition that includes the nondiffractive.,nservation law div=0 implies diviy=0, which inspired
fields with nonzero transversal energy flux.

us to introduce the following definition of a nondiffractive

The real photodetector measures the time-averaged ligli|y |f the average transversal component of the Poynting
power, Whlph is given as product of thg detector area an@ector(Sﬁ: I+ of an optical beam for all x, y, and z fulfills
light intensity | =(S)=(EXH). The quantityS=EXH isa  iha condition
Poynting vector. We point out one important property of the
definition of the Poynting vector, that it is very general and divl+=0, (5)
that it holds in any kind of possible media — linear, nonlin-
ear, nonhomogeneous, or anisotropic — while the definitiorthen such a beam is diffraction free.
of the energy density depends strongly on media properties. It follows from this definition and the conservation law

We will confine our considerations to stationary light (3) thatl_ =1, (x,y) for any nondiffractive beam. The trans-
fields (i.e., monochromatic beamsand call the assumed fre- versal componenit; depends orz in general, but not in the
guencyw. The electric intensitf can be written as a sum of case of linear homogeneous media, as can be proved using
complex components the decomposition of field to plane wave components. Using

@
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same phases, no transversal flux exists.
The complex vectors of elementary plane waves can be

found as follows:
cosy
51: 0 Aei Kxei,BzeiO7
—sing
( cosy Ael Kyel,Bz |71-/2 (6)
—sing
—cos
Ae” i KXei ﬁZei T
—sind
( —cos) Ae—ikyeiﬁzei377/2. (7)
—sind
The sum of these elementary plane waves for the resulting

intensity gives
FIG. 1. The needle plot of transverse light energy fldwsor

(& N=4, (b) N=3, and(c) N=40, and phaseg,=2mn/N, (d) o COSH COSex _

N'=40, and¢,=8mn/N. E=E1+E+E+E,=2A icosy cosky e'f?,
—sinf(sinky —i sinkXx)

the same decomposition, one can prove that for linear homo- (8)

geneous medidvacuunm both definitions of nondiffractive

fields (4) and (5) are equivalent. The divergent angl® is bound by the wave-vector trans-

It is worthwhile to point out that our definition also has versal componentx, and the longitudinal oneg by
simple geometrical interpretation: The transverse light intentand= «/B. One can simply verify that the resulting field is
sity component of a nondiffractive field has no source, or, transversal, i.e., d&=0. The light intensity can be calcu-
equivalently, all power lines of this field are closed. This islated using formulg2), and after some tedious algebra ma-

clearly seen in Figs.(8)-1(d). nipulations one obtains
This definition includes the most general nondiffractive ) )
fields, namely, all fields with zero transversal fllx=0, as 1/ —Sind coscx sinky
well as those that fulfill the modal function ansatz and maybe | = 8A2(£) Sing sinkx cos<y ) (9)
some others. We confirm our claims as follows.

There exist nondiffractive beams fulfilling definitio) —cosf(cos kx+ cos'ky)

which do not have the form @#). One can simply prove that \ye want to hint at the nonzero transversal components of
the standing wave in this case, E=X(A€’*  |ight intensity vector. The electric field has the modal form
+Ae 1F?)=%2A coBz, ‘H=Y2A sinBziwu, has (I)=0.  (4), and also satisfies definitiai); nevertheless it has com-
For completeness we add that the instantaneous Poyntingicated transversal energy fluxes, as shown in Fg), te-
vector isS=2./e/ uAZsin2Bz sin2wt. So we have proved that sembling a squared honeycomb. The equation for power
our definition is more general thag). lines can be derived dsinkx||sinky|=K; from this we can

At the end we shall give a nontrivial demonstration of See space-periodic behavior.
nondiffractive fields. We present nondiffractive fields with  In Figs. Xa)-1(d), using the computer, we have displayed
transversal energy fluxds+0, e.g., beams with a honey- four examples of similar nondiffractive beams, with complex
comb transversal flux of enerdgee Figs. (a) and Ab)] or  transversal energy flows expressed by small arroveedle
with a spiral transversal flux of enerdgee Fig. 1c) and  plot). These fields are constructed frokfiplane waves of the
1(d)]. These fields are not so “exotic” as one might think. same frequency and amplitude
We will now present one such nondiffractive beam analyti- N
cally. That field is constructed from four monochromatic _ - . .
plane waves of the same amplitulgits wave vectors lie on E= z‘l Aenexilikn T =iwt+ ¢, (10
cones with angled, the wave-vector ends form a regular
square, and the polarization of every plane wave has radiathere wave vectors lie on the surface of cones and their ends
direction. The phases of the waves are shiftednit® to its  create regular planaN-angle polygons in the transverse
neighbor. It is very important to note that in the case of theplanexy,
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Kk cog2mn/N)
k,=| « sin(2zn/N) |, (13)
B

and the polarization was chosen as radial,

- knX(kyX2)

= 2
" kX (kyX 2)| (12

The phase increases monotonically with,=27n/AN in
Figs. Xa)—-1(c) or ¢,=8mn/Nin Fig. 1(d). Figures 1c) and
1(d) strongly resemble the Bessel beaths although we
obtained them with only 40 plane waves. Note that the
phaseqFigs. 1c) and Xd)] have a strong influence on the
distribution and orientation of the light intensity flux, and
that all the power lines are closed, as expected.
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