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At the present time no general definition of nondiffractive beam has been generally accepted. We propose
one simple definition based on the Poynting vector and light intensity.@S1063-651X~96!13709-0#

PACS number~s!: 42.25.Fx

Diffraction of light was first reported by Leonardo da
Vinci, but the first steps to its understanding were only made
in the 17th ~Grimaldi, Huygens, Hook, Newton! and 18th
centuries~Fresnel, Young!. Historically, diffraction is what
we call the phenomenon when light is not traveling in
straight lines although it should be according to the laws of
ray optics. The discovery of diffraction served as an impor-
tant argument for overcoming corpuscular Newtonian optics.
The present-day idea about diffraction is not connected with
obstacles and apertures only@1#. Any nonhomogeneous light
intensity distribution makes for a diffraction of light~remem-
ber the Gaussian beam in free vacuum!.

In a narrower ‘‘technical’’ sense, diffraction means the
defocusing of a beam–i.e. the transversal change of the en-
ergy distribution in the beam. For the light energy and infor-
mation transfer it is very important to suppress that defocus-
ing or energy melting maximally. That problem was a strong
motivation for the study of nondiffractive fields.

Diffraction is the natural attribute of any wave phenom-
enon. Our goal will be to give an appropriate definition or
condition for the stationary light fields propagating with no
transversal spreading of energy in any dielectric media~non-
homogeneous and nonlinear as well!.

Some nondiffractive solutions are already known@2#. In a
vacuum they are planar waves and Bessel beams@3–8#; in
waveguides these fields are known as well, and are called
modes, in nonlinear media they are spatial solitons@9#, etc.

Up to now no general definition of a nondiffractive beam
has been accepted. We want to discuss some possible ap-
proaches to this question, and propose one simple definition
based on the Poynting vector.

The simplest intuitive definition of nondiffractive beams
can be introduced as a field with no transversal energy flux,
i.e., IT50 ~the trivial definition!. We will show that more
general nondiffractive fields are possible, and that we need
find a more general definition that includes the nondiffractive
fields with nonzero transversal energy flux.

The real photodetector measures the time-averaged light
power, which is given as product of the detector area and
light intensity I5^S&5^E3H&. The quantityS5E3H is a
Poynting vector. We point out one important property of the
definition of the Poynting vector, that it is very general and
that it holds in any kind of possible media — linear, nonlin-
ear, nonhomogeneous, or anisotropic — while the definition
of the energy density depends strongly on media properties.

We will confine our considerations to stationary light
fields ~i.e., monochromatic beams!, and call the assumed fre-
quencyv. The electric intensityE can be written as a sum of
complex components

E5EW exp~2 ivt !1EW* exp~ ivt !. ~1!

The same time behavior is assumed for the other electric and
magnetic vectorsD, H, andB.

The light intensity then reads

I5^S&5^E3H&52 Re$EW*3HW %5
2

mv
Im$EW*3rotEW%,

~2!

and the energy conservation law reads

divI50. ~3!

The vectorI can be decomposed asI5IT1IL , whereIT
is the transversal component ofI ~i.e., the component laying
in thex,y plane! while the longitudinal partIL is thez com-
ponent; we will suppose the light propagation to be in the
z axis only in the following.

In waveguide theory we can use the modal function an-
satz

EW~x,y,z!5e~x,y!exp~ ibz! ~4!

to find the explicit form of modes propagating along thez
axis, and thus can also serve as a useful definition of nondif-
fractive beams in the waveguide.

With respect to the chosen propagation axis, we assume
the transversal nonhomogeneity of a waveguide described by
the dielectric permittivitye(x,y). So the electric induction
DW 5eEW will have the same form~4!, and the magnetic inten-
sity as well. This can be proved by simple vector
algebra HW (x,y,z)5rotEW/ ivm5rot@e(x,y)exp(ibz)#/ivm5
h(x,y)exp(ibz) and the light intensity vector
I52Re$e*3h%5I (x,y) does not depend onz. The energy
conservation law divI50 implies divIT50, which inspired
us to introduce the following definition of a nondiffractive
field. If the average transversal component of the Poynting
vector^ST&5IT of an optical beam for all x, y, and z fulfills
the condition

divIT50, ~5!

then such a beam is diffraction free.
It follows from this definition and the conservation law

~3! that IL5IL(x,y) for any nondiffractive beam. The trans-
versal componentIT depends onz in general, but not in the
case of linear homogeneous media, as can be proved using
the decomposition of field to plane wave components. Using
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the same decomposition, one can prove that for linear homo-
geneous media~vacuum! both definitions of nondiffractive
fields ~4! and ~5! are equivalent.

It is worthwhile to point out that our definition also has
simple geometrical interpretation: The transverse light inten-
sity componentIT of a nondiffractive field has no source, or,
equivalently, all power lines of this field are closed. This is
clearly seen in Figs. 1~a!–1~d!.

This definition includes the most general nondiffractive
fields, namely, all fields with zero transversal flux,IT50, as
well as those that fulfill the modal function ansatz and maybe
some others. We confirm our claims as follows.

There exist nondiffractive beams fulfilling definition~5!
which do not have the form of~4!. One can simply prove that
the standing wave in this case, EW5 x̂(Aeibz

1Ae2 ibz)5 x̂2A cosbz, HW 5 ŷ2A sinbz/ivm, has ^I &50.
For completeness we add that the instantaneous Poynting
vector isS5 ẑAe/mA2sin2bzsin2vt. So we have proved that
our definition is more general than~4!.

At the end we shall give a nontrivial demonstration of
nondiffractive fields. We present nondiffractive fields with
transversal energy fluxesITÞ0, e.g., beams with a honey-
comb transversal flux of energy@see Figs. 1~a! and 1~b!# or
with a spiral transversal flux of energy@see Fig. 1~c! and
1~d!#. These fields are not so ‘‘exotic’’ as one might think.
We will now present one such nondiffractive beam analyti-
cally. That field is constructed from four monochromatic
plane waves of the same amplitudeA; its wave vectors lie on
cones with angleu, the wave-vector ends form a regular
square, and the polarization of every plane wave has radial
direction. The phases of the waves are shifted byp/2 to its
neighbor. It is very important to note that in the case of the

same phases, no transversal flux exists.
The complex vectors of elementary plane waves can be

found as follows:

EW15S cosu

0

2sinu
D Aeikxeibzei0,

E25S 0

cosu

2sinu
D Aeikyeibzeip/2, ~6!

EW35S 2cosu

0

2sinu
D Ae2 ikxeibzeip,

E45S 0

2cosu

2sinu
D Ae2 ikyeibzei3p/2. ~7!

The sum of these elementary plane waves for the resulting
intensity gives

EW5EW11EW21EW31EW452AS 2cosu coskx

icosu cosky

2sinu~sinky2 i sinkx!
D eibz.

~8!

The divergent angleu is bound by the wave-vector trans-
versal componentk, and the longitudinal oneb by
tanu5k/b. One can simply verify that the resulting field is
transversal, i.e., divEW50. The light intensity can be calcu-
lated using formula~2!, and after some tedious algebra ma-
nipulations one obtains

I58A2S e

m D 1/2S 2sinu coskx sinky

sinu sinkx cosky

2cosu~cos2kx1cos2ky!
D . ~9!

We want to hint at the nonzero transversal components of
light intensity vector. The electric field has the modal form
~4!, and also satisfies definition~5!; nevertheless it has com-
plicated transversal energy fluxes, as shown in Fig. 1~a!, re-
sembling a squared honeycomb. The equation for power
lines can be derived asusinkxuusinkyu5K; from this we can
see space-periodic behavior.

In Figs. 1~a!–1~d!, using the computer, we have displayed
four examples of similar nondiffractive beams, with complex
transversal energy flows expressed by small arrows~needle
plot!. These fields are constructed fromN plane waves of the
same frequency and amplitude

E5 (
n51

N

AeWnexp@ ikn•r2 ivt1fn#, ~10!

where wave vectors lie on the surface of cones and their ends
create regular planarN-angle polygons in the transverse
planexy,

FIG. 1. The needle plot of transverse light energy flowsIT for
~a! N54, ~b! N53, and~c! N540, and phasesfn52pn/N, ~d!
N540, andfn58pn/N.

54 3053BRIEF REPORTS



kn5S k cos~2pn/N!

k sin~2pn/N!

b
D , ~11!

and the polarization was chosen as radial,

eWn5
kn3~kn3 ẑ!

ukn3~kn3 ẑ!u
. ~12!

The phase increases monotonically withfn52pn/N in
Figs. 1~a!–1~c! or fn58pn/N in Fig. 1~d!. Figures 1~c! and
1~d! strongly resemble the Bessel beamsJ1, although we
obtained them with only 40 plane waves. Note that the
phases@Figs. 1~c! and 1~d!# have a strong influence on the
distribution and orientation of the light intensity flux, and
that all the power lines are closed, as expected.
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